
	 	 Nazar	Kravtsov	

	 	 	 1	

	
	
	

Comp4	Computing	Project	
	

Web-based	teaching	portal	
	
	
	
	
	 	

	 	 Nazar	Kravtsov	

	 	 	 2	

	
	

Table	of	Contents	

ANALYSIS	..	3	
Background	of	problem	..	4	
Description	of	the	current	systems	and	Research	...	4	
Identification	of	prospective	user	...	5	
Users	of	the	new	system	..	5	
Interview	...	5	
Identification	of	user	needs	...	6	
Objectives	..	6	
Data	sources	and	destinations	...	7	
Data	flow	of	the	current	system	...	8	
Potential	solutions	...	10	

Design	...	12	
Overall	System	Design	...	13	
Modular	design	..	13	
Data	Dictionary	..	14	
Definition	of	record	structure	..	15	
Validation	..	15	
User	Interface	Design	...	16	
System	Flowcharts	...	17	

Entity-relationship	diagram	..	17	
Storage	Requirements	...	18	
Proposed	Algorithms	for	complex	structures	...	18	
Security	and	Integrity	of	Data	..	19	
System	Security	...	20	
Software	used	..	20	

System	Testing	..	22	
Trace	tables	...	52	

System	Maintenance	...	56	
System	Overview	...	56	
E-R	diagram	...	58	

User	manual	..	62	
Installation	guide	...	62	

Appraisal	...	71	
	

	 	 Nazar	Kravtsov	

	 	 	 3	

	

	
	
	
	
	
	
	
	
	

	

	

ANALYSIS	
	
	
	 	

	 	 Nazar	Kravtsov	

	 	 	 4	

Background	of	problem	
	
In	the	modern	era,	teachers	and	students	need	to	have	a	communication	between	
each	other,	whether	it	is	giving	back	the	homework,	writing	a	feedback	for	student	
or	just	asking	a	question	from	a	teacher.	Most	used	type	of	communication	between	
students	and	teachers	on	the	internet	is	e-mail.	But	the	problem	with	e-mail	is	that	it	
can	become	quite	cluttered	when	you	manage	multiple	classes	as	a	teacher.	
	
Also	e-mail	is	quite	limited,	there	is	no	way	to	make	up	to	date	information	pages.	
Current	system	is	based	on	sending	e-mails	to	a	pre-defined	list	of	students	which	
then	they	can	check	their	e-mail	account	for	new	e-mails.		
	
Recently	the	school	has	installed	a	web-portal	called	“[redacted]”	that	helps	with	
managing	prep	work	and	other	useful	features.	
	
Description	of	the	current	systems	and	Research	
	
At	the	moment,	some	teachers	are	telling	the	prep	on	the	
end	of	the	lesson,	which	is	annoying	for	students,	because	
they	have	to	either	memorise	or	write	the	given	prep	
somewhere,	but	it's	also	annoying	for	teachers,	because	
they	need	to	write	down	the	prep	somewhere	too	so	that	
it	would	be	asked.	This	is	both	frustrating	and	time	
consuming	for	both	students	and	teachers.		
	
Some	teachers	are	also	using	e-mails	to	send	and	receive	prep.		But	the	problem	with	
that	is	it	could	become	really	messy	if	there	are	multiple	classes,	and	it's	difficult	to	
manage	those	classes	as	well.	Teachers	hope	that	the	new	system	could	improve	the	
management	of	classes	and	it	would	be	less	time-consuming	for	them	and	for	
students.		
	
There	has	been	a	recent	change	to	the	school	system	
management:	school	has	installed	a	web-portal	
[redacted],	which	helps	with	sending	and	receiving	
prep	work	and	showing	useful	information	like	
timetables	to	the	students	and	teachers.	But	the	
problem	is	that	not	everyone	likes	it,	because	its	
interface	is	slow	and	confusing,	and	there	are	some	
bugs.	
	
	
	
	

Figure	1.	Outlook	Web	App	

Figure	2.	[redacted]	

	 	 Nazar	Kravtsov	

	 	 	 5	

Identification	of	prospective	user	
	
This	is	where	my	project	can	help	students	and	teachers.	Those	groups	will	mostly	be	
using	my	system	on	daily	basis.			
	
Users	of	the	new	system	
	
New	system	will	be	based	on	web	pages,	so	anyone	could	use	it	if	they	have	internet	
access.	No	installation	or	any	external	software	is	required	for	teachers	and	students,	
only	web	browser	and	a	server	where	the	school	system	is	stored	and	running.		
	
Everything	will	be	stored	in	one	server,	every	part	of	the	system	could	be	managed	
easily.	Students,	teachers	and	administrators	will	have	different	permissions,	so,	for	
example,	students	can't	add	assignments,	only	teachers	can,	or	only	administrators	
have	access	to	admin	panel.	
	
	
School	web	system	will	need	to	be	available	at	any	computer	or	mobile.	
	
	
Interview	
	
Question: What about [redacted] that you don’t like? What can be
improved/added?
	
The	temperamental	nature	of	the	system	so	far	is	a	major	issue.	Both	
students	and	staff	are	anxious	that	it’s	a	system	that	crashes	and	
doesn’t	allow	people	access	to	their	work.	This	needs	to	improve	as	
confidence	in	systems	is	everything.	
	
There	should	be	improvements	made	regarding	loading	powerpoints	
on	to	academic	pages	as	presently	if	there	are	a	high	number	the	
system	cannot	handle	it	–	PP	are	very	important	tools	to	teach	
students.	
	
Question: Do you think that using website for doing all school work
is more beneficial and fun than sending emails to students?	
I	think	I	would	say	that	emails	add	a	sense	of	security	at	the	moment	
as	it’s	a	well-used	system.		
	

	 	 Nazar	Kravtsov	

	 	 	 6	

If	the	IT	dept.	could	guarantee	100%	then	I	would	be	more	than	
happy	using	the	website.	
	
-	[redacted]		
	
	
Identification	of	user	needs		
	
	

• The	system	needs	to	be	able	to	hold	all	information	about	each	user,	like	
-	user's	login	details	
-	user's	personal	details	(like	DoB,	gender,	phone	number)	
-	user's	account	creation	date	
-	permissions	
-	what	classes	does	he	participate	
-	what	classes	does	he	teaches,	etc.	

• The	system	needs	to	be	able	to	store	information	about	assignment,	like	
-	name	
-	full	text	
-	what	teacher	has	created	the	assignment	
-	what	class	this	assigned	to	

• The	system	needs	to	be	able	to	show	all	information	about	assignment	quickly		
	
Objectives	
	

1. Program	should	have	log-in	system,	a	method	to	register	users,	have	
activation	system,	log-out	system	

2. User	interface	should	show	all	assignments		
3. User	inputs	must	be	validated	to	avoid	erroneous	or	incorrect	data.	
4. Permissions	

4.1. Unlogged	users	can't	access	main	part	of	system	
4.2. Students	can't	access	some	of	parts	of	system	
4.3. Teachers	can	access	most	of	parts	of	system	except	admin	panel	
4.4. Administrators	can	access	everything		

5. There	is	teacher	assigned	to	classes/groups	and	students	are	assigned	to	
classes/groups	

6. Teacher	can	send	assignment	to	students	
7. Students	can	upload	their	finished	work	to	the	system	

7.1. Students	can	upload	text	
7.2. Students	can	upload	files	

8. Teacher	can	submit	feedback	to	a	student	
9. Users	can	reset	submitted	work	or	delete	assignment	
10. Timetable	available	for	a	student	(timeline)	

	 	 Nazar	Kravtsov	

	 	 	 7	

11. Administrators	can	populate	database	with	data	(Excel	file,	etc.)	
	
	
	
	
	
Data	sources	and	destinations	
	
Current	system	–	E-mail	:	
	

What	is	it	 Source	 Destination	
Task	set	for	students	 Teacher's	input	on	email	

program	
Students	emails	

Finished	task	from	
students	

Student's	input	on	email	
program	

Teachers	emails	

	
New	system:	
	

What	is	it	 Source	 Destination	
Task	set	for	students	 Teacher's	input	on	web	

portal/Upload	
Assignments	db	
table/uploaded	file	to	the	
server	

Finished	task	from	
students	

Student's	input	on	web	
portal/Upload	

Assignments	db	
table/uploaded	file	to	the	
server	

Messages	to	
students/teachers	

Students/Teachers	 Notices	db	table	

	
	
Data	volumes	
	
I	will	be	storing	hundreds	of	user	records	and	also	assignments	and	other	features	
that	are	related	in	a	database.	Each	day,	teachers	will	be	setting	assignments	to	the	
class	(usually	10-15	or	more	students).	Teachers	will	either	set	the	whole	task	by	text	
in	assignments	description	or	they	could	upload	a	file,	and	the	file's	size	may	vary	
from	few	kilobytes	to	few	megabytes.		
	
Data	Dictionary	
	
Field	Name	 Field	

Purpose	
Field	
Type	

Field	
Size	

Example	Data	 Validation	

	 	 Nazar	Kravtsov	

	 	 	 8	

Username	 Stores	the	
login	
information	
identifier	

String	 30	 peter.robinson,		
peter@gmail.com	

Not	blank	

Password	 Stores	the	
password	
for	login	
identifier	

String	
(encrypt
ed	hash)	

120	 pbkdf2:sha1:1000
$TCWFmccG$989
17247c942eca71b
84eda2f8a42592b
f178fd5	

Not	blank	

First	Name	 Stores	first	
name	of	an	
user	

String	 30	 Peter	 Check	if	it's	
only	text	(no	
special	
symbols	
allowed)	

Last	Name	 Stores	last	
name	of	an	
user	

String	 30	 Robinson	 Check	if	it's	
only	text	(no	
special	
symbols	
allowed)	

Date	of	
Birth	

Stores	the	
date	of	birth	
of	an	user	

DateFiel
d	

10	 10/10/1997	 Only	validate	
by	format	
%d/%m/%Y	

Activated	 Stores	if	the	
user	is	
activated	or	
not	(did	
user	put	in	
his	personal	
info)	

Boolean	 1	
(true/f
alse)	

True	 Only	boolean	

	
	
Database	will	be	based	on	SQLite.	It	is	easy	and	lightweight	choice,	but	it	is	also	
robust	and	can	handle	lots	of	queries	without	problems.	SQLAlchemy	package	will	be	
used	for	connections	between	the	server	and	the	database.	It	simplifies	the	
communication	and	you	don't	have	to	write	raw	SQL.	
	
	
Data	flow	of	the	current	system	
	

	 	 Nazar	Kravtsov	

	 	 	 9	

	

	
	 	

1. Teacher	opens	up	email	program	and	sends	email	with	description	of	the	prep	
and	files	attached	(if	any)	//	Teacher	tells	the	prep	after	lesson	

2. Student	gets	email	//	Student	writes	down	the	prep	
3. Student	is	doing	prep,	if	there	are	any	issues,	student	emails	the	teacher	
4. Teacher	gets	either	written	prep	or	prep	in	digital	form	

	

	 	 Nazar	Kravtsov	

	 	 	 10	

	
	
	
Potential	solutions	
	

1. Windows-based	school	system	application	
	
Students	login	to	school	computers	and	do	all	their	work	there.	Application	would	
have	a	GUI	where	students	upload	their	work	and	it	gets	sent	to	teacher's	
computers.	Authentication	will	be	tied	to	school	system's	Windows	login	system	
(Active	Directory),	and	all	application's	data	will	be	on	Windows	Server.	
	
Advantages:	
Authentication	is	unified,	so	no	need	for	an	extra	authentication	system	if	the	school	
is	already	using	one	
All	files	are	stored	in	school	network;	fast	access	
	
Disadvantages:	
Users	don't	have	portability,	they	can't	access	system	from	outside	the	school	
network	
System	would	be	tied	to	one	operative	system	(Windows)	
No	access	from	mobile	devices	

	 	 Nazar	Kravtsov	

	 	 	 11	

	
	
	

2. Standalone	applications	
	
Different	applications	for	each	major	operating	system	(Windows,	Mac	OS,	Linux).	
Cross-platform	programming	language	and	GUI	will	be	used	which	will	work	on	all	
platforms.	Those	applications	will	be	able	to	connect	to	a	server	which	sends	back	
necessary	data	(like	assignments,	etc.)	
	
Advantages:	
Faster	interface	(because	it	would	be	native	application)	
Takes	advantages	of	operating	system	(push	notifications?)	
Security	(application	can	identify	computers	that	are	using	the	system)	
	
Disadvantages:	
Application	needs	to	be	downloaded	before	using	
Application	needs	to	be	tested	everytime	on	every	platform		
No	access	from	mobile	devices	
	
	
	

3. Web-based	portal	
	
Users	can	open	a	webpage,	log-in	and	use	the	system.	Mobile	users	can	also	use	the	
system	because	of	responsive	design	of	the	webpage	that	adapts	to	the	screen	
resolution.	
	
Advantages:	
Every	device	with	web	browser	can	access	the	system	
Interface	can	be	easily	edited	
	
Disadvantages:	
Limited	resources	
No	native	possibilities	
	
	
Chosen	solution	
	
I	have	chosen	web-based	portal	because	it	is	the	easiest	and	accessible	solution.	
Almost	every	device	has	a	web	browser	built-in	and	it	makes	accessing	school	web	
portal	much	easier.		
	

	 	 Nazar	Kravtsov	

	 	 	 12	

I	have	chosen	to	use	Python	as	a	main	programming	language	because	I	have	a	lot	of	
experience	in	it,	and	there	are	a	lot	of	useful	libraries	that	can	help	with	my	project.		
	
	
	
	
	
	
	
	
	
	
	
	
	

Design	
	 	

	 	 Nazar	Kravtsov	

	 	 	 13	

	
	
Overall	System	Design	
	
We	are	going	to	use	IPSO	table	to	show	possible	inputs/outputs.	
	
Inputs	 Processes	 Storage	 Outputs	
User	register	from	
Excel	file	

First	name	
Last	name	
Username	
Email	
Password	
DoB	
Gender	
Phone	
Nationality	

Database	table:	
User	

Registered	users	

User	login	 Login	
Checking	
password's	hash	
against	db	

Database	table:	
User	

Success/Failure	
message	

Assignment	submit	 Text	
Upload	file	

Database	table:	
Assignment	
Uploaded	files	
goes	to	storage	
folder	

Success/Failure	
message	
Assignment	text		

	
	
	
	
	
	
	
Modular	design	
	

• Main	menu	
o Assignments	

§ Add	assignment	
§ Remove	assignment	
§ Mark	assignment	
§ View	assignment	

o Notices	
§ Add	notice	

o Admin	view	

	 	 Nazar	Kravtsov	

	 	 	 14	

§ Add	user	from	form	
§ Add	user	from	excel	file	
§ Manage	users	
§ Populate	

	
	
	
Data	Dictionary	
	
Field	Name	 Field	

Purpose	
Field	
Type	

Field	
Size	

Example	Data	 Validation	

Username	 Stores	the	
login	
information	
identifier	

String	 30	 peter.robinson,		
peter@gmail.com	

Not	blank	

Password	 Stores	the	
password	
for	login	
identifier	

String	
(encrypt
ed	hash)	

120	 pbkdf2:sha1:1000
$TCWFmccG$989
17247c942eca71b
84eda2f8a42592b
f178fd5	

Not	blank	

First	Name	 Stores	first	
name	of	an	
user	

String	 30	 Peter	 Check	if	it's	
only	text	(no	
special	
symbols	
allowed)	

Last	Name	 Stores	last	
name	of	an	
user	

String	 30	 Robinson	 Check	if	it's	
only	text	(no	
special	
symbols	
allowed)	

Date	of	
Birth	

Stores	the	
date	of	birth	
of	an	user	

DateFiel
d	

10	 10/10/1997	 Only	validate	
by	format	
%d/%m/%Y	

Activated	 Stores	if	the	
user	is	
activated	or	
not	(did	
user	put	in	
his	personal	
info)	

Boolean	 1	
(true/f
alse)	

True	 Only	boolean	

	
	

	 	 Nazar	Kravtsov	

	 	 	 15	

	
Definition	of	record	structure	
	
Database	management	will	be	based	on	SQLAlchemy.	It	is	Object	Relational	Mapper	
(ORM)	that	simplifies	managing	database,	and	it	is	used	for	connections	between	the	
server	and	the	database.	It	simplifies	the	communication	and	there	is	no	need	to		
write	raw	SQL.	
	
Database	will	be	based	on	SQLite.	It	is	easy	and	lightweight	choice,	but	it	is	also	
robust	and	can	handle	lots	of	queries	without	problems.	SQLAlchemy	package	will	be	
used	for	connections	between	the	server	and	the	database.	It	simplifies	the	
communication	and	you	don't	have	to	write	raw	SQL.	
	
	
Validation	
	
Field	name	 Validation	

checks	
Description	 Error	

message	
Data	 Caught	

Login	–	
Username/Email	

Presence,	
Length	

We	can't	
check	
email	
because	it	
can	be	
username	

Please	
enter	
valid	
login.	

test@test.com,	
test123	

Yes	

Password	 Presence,	
Length,	no	
spaces,	
only	valid	
set	of	
characters	

Make	sure	
that	
password	is	
in	certain	
set	of	valid	
char	

Please	
enter	a	
password	

Qwe,	ewq	 Yes	

Date	of	Birth	 Datatype	–	
Date	(DD-
MM-YY)	

Make	sure	
it	is	correct	
date	

Please	
insert	
valid	date	

10-10-1997,	
12-12-2004	

Yes	

Gender	 Lookup/List	 Make	sure	
the	correct	
gender	is	
chosen	

Please	
insert	
correct	
gender	

Male,	Female	 Yes	

Subject	 Llist	 Make	sure	
the	correct	
subject	is	
chosen	

Please	
choose	
the	
subject	

Computer	
Science,	
Biology	

Yes	

	
	

	 	 Nazar	Kravtsov	

	 	 	 16	

	
	
	
User	Interface	Design	
Login	page	
	
	

	
Main	dashboard		
	

	

	 	 Nazar	Kravtsov	

	 	 	 17	

	
	
	
	
	
System	Flowcharts	
	

	
	
	
Entity-relationship	diagram	
	
	
	

	
	

	 	 Nazar	Kravtsov	

	 	 	 18	

	
Storage	Requirements	
	
Software	will	be	installed	on	a	server	and	client	will	access	the	software	by	using	web	
browser	and	entering	server’s	address,	so	there	is	no	need	to	install	software	on	end	
user’s	computer.	
	
On	a	server’s	side:	the	whole	program	will	take	a	few	megabytes	of	memory	space,	
but	the	required	size	will	increase	as	users	upload	more	files	and	database	records	
added,	so	a	good	amount	of	storage	memory	is	required.		
	
	
	
	
Proposed	Algorithms	for	complex	structures	
	
Login	form	
	
This	code	takes	the	username	OR	email	and	password	input	from	an	user	which	is	
received	from	the	form	and	then	it	checks	against	the	record	in	the	database.	
	
Pseudo	Code	
	
If	Form.Valid():	
Login	=	Form.GetLogin	
Password	=	Form.GetPassword	
User	=	DB.Query(username=Login)	
If	User	not	exists:	
User	=	DB.Query(email=Login)	
If	User	exists	and	check_password_hash(User.password,	Password):	
	 Session['user_id']	=	User.id	
	 ShowMessage('Welcome')	
Else:	
	 ShowMessage('Wrong	login	or	password')	
	
	
Serving	uploaded	files	
	
This	code	takes	ID	of	required	file	and	checks	for	database	for	entry	of	this	file.	
	
Pseudo	Code	
uid	=	Request.get(«uid»)	
file	=	DB.AssignedTo.Query(submitted_file_id=uid).first()	

	 	 Nazar	Kravtsov	

	 	 	 19	

if	file	exists:	
	 folder	=	GetAbsolutePath()	+	«/uploads/»	#	our	uploads	file	
	 return	send_file_from_directory(folder,	uid,	as_attachment=True)	
else:	
	 abort(404)	#	sends	404	error	
	
	
Add	assignment	
	
This	page	sends	possible	subject	list	and	student	list	to	the	user	and	processes	data.	
	
Pseudo	Code	
	
Form	=	AddAssignment()	
Subject_choices	=	Subject.query.all().map(subject.id,	String(subject))	
Form.subject.choices	=	Subject_choices	
	
Student_choices	=	User.query.all().map(student.id,	String(student))	
Form.student.choices	=	Student_choices	
	
If	form.IsValid():	
	 Assignment	=	Assignment(FormData)	
	 DB.Session.Add(Assignment)	
	 DB.Session.Commit()	
	 	
	 For	students	in	form.students.data:	
	 	 Assigned_to	=	AssignedTo(assignment_id=assignment.id,	
assigned_to=student)	
	 	 DB.Session.Add(Assigned_to)	
	 	 DB.Session.Commit()	
	 	
	
	
	
	
Security	and	Integrity	of	Data	
	
There	are	a	lot	of	sensitive	data	that	will	be	stored	in	a	database,	so	there	should	be	
some	protection	in	case	where	system	gets	hacked.	
	
All	passwords	for	user	in	database	are	stored	in	encrypted	form,	using	PBKDF2	
(Password-Based	Key	Derivation	Function	2)	and	the	encryption	algorithm	is	SHA1.	
Hashes	are	generated	using	«generate_password_hash»	function	from	Werkzeug	

	 	 Nazar	Kravtsov	

	 	 	 20	

library.	To	check	if	the	hash	is	valid	for	inputted	password,	«check_password_hash»	
function	is	used	from	the	same	library.		
	
For	uploading	files,	to	prevent	hackers	to	access	data	from	different	directories	
(using	XSS),	«secure_filename»	function	is	used	from	Werkzeug	library	to	sanitize	the	
uploaded	filename.		
	
Also	to	prevent	XSS	attacks	from	users	when	submitting	data	(for	example,	
assignment	text),	all	inputted	data	is	going	through	«escape»	function	which	replaces	
special	characters	like	“&”,	“<”,	“>”	and	(”)	to	HTML-safe	sequences.		
	
The	main	database	for	whole	project	is	stored	in	«app.db»	file.		
	
System	Security	
	
System	Security	is	also	an	important	part	of	my	project.	User	needs	a	login	and	
password	in	order	to	access	most	parts	of	the	system.	Without	login	and	password,	
user	gets	redirected	to	login	form	and	asked	to	enter	their	credentials.		
	
Modules	that	will	be	designed	
	
Populate	–	this	is	where	sample	data	gets	added	to	the	database	and	where	
database	can	be	recreated	
Config	–	this	is	where	I	put	configuration	settings	for	my	application.	I	have	borrowed	
_basedir	function,	upload	folder	variables	and	SQLAlchemy	connection	settings	from	
the	sample	application	from	Internet	
__init__	-	starting	point	of	the	program.	I	took	function	for	generating	secret	key	for	
this	
views	–	all	views	(URL	endpoints)	are	located	here.		
Forms	–	all	forms	are	located	here	
Modules	–	all	structure	for	a	database	is	located	here	
Decorators	–	all	decorators	that	will	help	me	create	permissions	are	located	here.	I	
took	a	snippet	of	code	for	a	decorator	from	official	Flask	website	
	
	
Software	used	
	
Backend:		
	

• Python	2/3	
• Flask	(web-framework)	
• Flask-Login	(simplifies	login	management)	
• Flask-Upload	(for	managing	uploads)	

	 	 Nazar	Kravtsov	

	 	 	 21	

• Flask-Admin	(admin	panel)	
• SQLAlchemy	(used	to	connect	to	a	database)	
• Nginx	(serving	static	content	like	images,	scripts	etc)	-	optional	
• UWSGI	(used	to	connect	Flask	with	Nginx)	-	optional	
• Supervisor	(for	keeping	server	online)	-	optional	
	

Frontend:	
	

• Bootstrap	3	
• Flatlab	CSS	
• Javascript	
• Jquery	
• CKEditor	
• Jquery	plugins	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 	 Nazar	Kravtsov	

	 	 	 22	

	

System	Testing	
	
Test	

No.	

Purpose	of	

Test	

Test	Data	 Expected	

Outcome	

Actual	Outcome	 Comments/	

Actions	

Screenshot	

Ref.	

1	 Testing	Login	
form	

Login:	
user1@user.com	
Password:	
1	
Normal	

Logs	in	(test	
account),	goes	
to	activate	page	

As	expected	 Reference	to	
Objective	1	

Screenshot	

1,	1.2	

2	 Testing	Login	
Form	

Login:	
user1@user.com	
Password:	
None	
Extreme	

Gives	error	
message	

As	expected	 Reference	to	
Objective	1	

Screenshot	

2	

3	 Testing	Login	
Form	

Login:	
user1@user.com	
Password:	
123456	(wrong	
password)	
Extreme	

Gives	error	
message	about	
password	being	
wrong	

As	expected	 Reference	to	
Objective	1	

Screenshot	

3	

4	 Testing	
Activate	
Form	

E-mail:	not-an-email	
Password:	None	
Extreme	

Gives	error	
message	about	
invalid	error	
address	

As	expected	 Reference	to	
Objective	1	

Screenshot	

4	

	 	 Nazar	Kravtsov	

	 	 	 23	

5	 Testing	
Activate	
Form	

E-mail:	
test@example.com	
Password:	123	
Normal	

Activates	
account	and	
redirects	to	
home	page	

As	expected	 Reference	to	
Objective	1	

Screenshot	

5	

6	 Testing	
Activate	
Form	–	
trying	to	
login	by	
email	which	
already	
exists	in	
database	

E-mail:	123@123.com	
Password:	123	
Extreme	

Gives	error	
about	email	
already	been	
used	

As	expected	 Reference	to	
Objective	1	

Screenshot	

6	

7	 Testing	
Activate	
Form	–	
succesful	
log-in	

E-mail:	
12345@12345.com	
Password:	12345	
Normal	

Shows	the	
message	about	
successfull	
activation	and	
redirects	to	main	
page	
-	Shows	
«Student»	title	

As	expected	 Reference	to	
Objective	1	

Screenshot	
7	

8	 Testing	
Student	
permissions	
–	going	to	
admin	panel	

URL:	
http://127.0.0.1:5000/	
admin/	
Extreme	

Won't	allow	
administrative	
panels	

As	expected	 Reference	to	
Objective	4.2	

Screenshot	

8	

	 	 Nazar	Kravtsov	

	 	 	 24	

9	 Testing	
interface	-	
logout	

URL:	
http://127.0.0.1:5000/	
users/me/	
Clicking	on	profile	
button	at	the	top	right	
of	interface	
Clicking	on	«Logout»	
button	
Normal	

Shows	«Logout»	
button	
Log	outs	
successfully	and	
shows	message	
about	logout	

As	expected	 Reference	to	
Objective	1	

Screenshot	
9,	9.1	

10	 Testing	
access	
without	
login		

URL:	
http://127.0.0.1:5000/	
users/me/	
Extreme	

Redirects	to	
login	page	and	
shows	message	
about	signing	in	

As	expected	 Reference	to	
Objective	4.1	

Screenshot	
10	

11	 Testing	
admin	
access	

URL:	
http://127.0.0.1:5000/	
users/login/	
Email/Username:	
admin	
Password:	admin	
Normal	

Redirects	to	
main	page	and	
shows	«Admin»	
status	and	few	
additional	
options	on	the	
menu	

As	expected	 Reference	to	
Objective	4.4	

Screenshot	
11	

12	 Testing	Excel	
file	upload	

URL:	
http://127.0.0.1:5000/	
users/upload_excel/	
Normal	

Uploads	a	file	to	
a	server	and	it	
parses	and	
creates	records	
for	users	given	

Error:	FileNotFoundError:	[Errno	
2]	No	such	file	or	directory:	
'/uploads/excel.xlsx'	
Fixed	by	changing	the	value	of	
UPLOAD_FOLDER	from	
«/uploads/»	to	«uploads».	
os.path.join	function	was	
working	incorrectly	when	two	

Reference	to	
Objective	11	

Screenshot	
12	

	 	 Nazar	Kravtsov	

	 	 	 25	

slashes	were	on	the	sides	of	
variable.	

13	 Testing	
Admin	Panel	
access	

Main	page	
Clicking	on	«Admin	
Panel»	on	sidebar	
Normal	

Redirects	to	
admin	panel	

As	expected	 Reference	to	
Objective	4.4	

Screenshot	
13	

14	 Adding	
timetable	
entry	

Going	to	«Timetable»	
page	
Adding	entry:	
User:	Admin	Admin	
Classes:	Computer	
Science	|	Ivan	Arnold	
Day	of	Week:	Monday	
Time:	08:00	
Normal	

Adds	entry	 As	expected	 Reference	to	
Objective	11	

Screenshot	
14	

15	 Testing	
timetable	

Going	back	to	main	
page	
Normal	

Shows	the	
timetable	entry	
on	the	timeline	

Error:	
jinja2.exceptions.UndefinedError	
jinja2.exceptions.UndefinedError:	
'datetime.time	object'	has	no	
attribute	'time'	
{{	
item.time.time()	}}	
Fixed	by	changing	
«item.time.time()»	to	
«item.time».	This	is	because	
«time»	item	is	already	passed,	no	
need	to	convert	it	again	by	using	
.time().		

Reference	to	
Objective	10	

Screenshot	
15	

	 	 Nazar	Kravtsov	

	 	 	 26	

16	 Adding	
timetable	
entry	

Going	to	«Timetable»	
page	on	admin	panel	
All	fields	are	empty	
Extreme	

Shows	error	
about	required	
fields	

Record	successfully	added	
Fixed	by	making	fields	not	
nullable.	

Reference	to	
Objective	11	

Screenshot	
16	

17	 Adding	few	
more	
timetable	
entries	and	
showing	
timeline	

On	«Timetable»	page	
on	admin	panel,	
adding	few	more	
timetable	entries	and	
testing	timeline	
	

Shows	all	added	
timetable	
entries	in	sorted	
way	

As	expected	 Reference	to	
Objective	10,	
11	
I	set	up	so	that	
all	timetable	
entries	will	
show,	no	
matter	which	
day	of	week.	It	
will	make	
testing	much	
easier	to	do.	

Screenshot	
17	

18	 Removing	
assignment	

On	«Assignments»	
page,	clicking	on	Trash	
button	on	«Maths	
Homework»	
assignment	

Shows	modal	
about	
confirmation	of	
deleting	

As	expected	 Reference	to	
Objective	9	

Screenshot	
18	

19	 Removing	
assignment	

Clicking	on	«Delete»	
button	

Shows	message	
about	deletion	
and	deletes	
assignment	
«Maths	
Homework»	

As	expected	 Reference	to	
Objective	9	

Screenshot	
19	

	 	 Nazar	Kravtsov	

	 	 	 27	

20	 Adding	new	
assignment	

Clicking	on	“Add	
Assignment”	button		
Title:	Biology	Prep	
Body:	Please	do	task	1	
on	page	2.	
Checkbox	checked	on	
“Biology”	
Students:	All	selected	
Deadline:	23-04-16	
00:00	
Text	Required:	Yes	
File	Required:	Yes	
Clicking	on	“Submit”	

Shows	message	
«Assignment	
successfully	
added»		
Shows	new	
assignment	on	
assignments	
page	

As	expected	 Reference	to	
Objective	6	

Screenshot	
20		

21	 Checking	
assignment	
entry		

Clicking	on	new	
«Biology	Prep»	entry	

Shows	two	
panels	with	all	
information	at	
the	left	and	
submission	of	
work	at	the	right	

As	expected	 Reference	to	
Objective	6	

Screenshot	
21		

22	 Checking	
assignment	
entry	as	
another	user	

Login	in	as	another	
user:	123@123.com;	
123	(Riley	Baker)	
	

Shows	
assignment	
«Biology	Prep»	
at	the	main	page	

As	expected	 Reference	to	
Objective	7	

Screenshot	
22		

23	 Submitting	
assignment	

Clicking	on	
assignment	and	
submitting	text	and	
file	

Shows	message	
«Your	
assignment	has	
been	
submitted.»	and	

As	expected	 Reference	to	
Objective	7.1,	
7.2	

Screenshot	
23,	23.1	

	 	 Nazar	Kravtsov	

	 	 	 28	

panel	changes	to	
button	with	
resetting	the	
assignment	

24	 Teachers	
view	

Login	in	as	another	
user:	
admin@admin.com,	
admin	(Teacher)	
Clicking	on	«Biology	
Prep»	assignment,	
clicking	on	«Teachers	
view»,	scrolling	down	
to	«Riley	Baker»	
submission	

Shows	
submitted	text	
and	file	attached	
with	button	
«Give	Feedback»	

As	expected	 Reference	to	
Objective	8	

Screenshot	
24	

25	 Downloading	
attached	file	

Clicking	on	
«766a20bc-ccf2-4759-
ad70-
7673589f6e00.gif»	

Downloads	file	 Error:	404	Not	Found	
Fixed	by	removing	«os.getcwd()»	
from	«folder	=	os.getcwd()	+	
app.config['UPLOAD_FOLDER']».	
	

Reference	to	
Objective	7.2	

Screenshot	
25	

26	 Giving	
feedback	

Clicking	on	«Give	
Feedback»	button,	
entering	feedback	text	
“Good	Work!”	and	
clicking	on	«Submit»	

Shows	message	
«Feedback	
successfully	
given.»	
On	«Riley	Baker»	
assignment	it	
shows	that	
assignment	has	

As	expected	 Reference	to	
Objective	8	

Screenshot	
26	

	 	 Nazar	Kravtsov	

	 	 	 29	

already	been	
given	

27	 Looking	at	
feedback	
from	
another	user	

Login	in	as	another	
user:	123@123.com;	
123	(Riley	Baker)	
Going	to	«Biology	
Prep»	assignment.	

Shows	feedback	
from	assignment	
from	«Admin	
Admin»	that	
says	«Good	
work!»		

As	expected	 Reference	to	
Objective	8	

Screenshot	
27	

28	 Resetting	
assignment	

Clicking	on	“Reset	
your	submitted	
assignment”	button	

Shows	text	and	
file	upload	
panels	instead	of	
button	

As	expected	 Reference	to	
Objective	9	

Screenshot	
28	

29	 Creating	a	
class	

Login	as	
administrator,	going	
to	admin	panel,	
clicking	on	«Group»	
tab,	entering	data:	
Name:	CHEM1	

Shows	«Record	
was	successfully	
saved»	and	
shows	newly	
added	record	on	
the	list	

As	expected		 Reference	of	
Objective	5	

Screenshot	
29	

30	 Adding	a	
notice	to	a	
group	

Going	to	main	menu,	
clicking	on	«Add	
Notice»,		

	 	 	 	

	
	 	

	 	 Nazar	Kravtsov	

	 	 	 30	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

Screenshot	2	 Screenshot	1.2	

Screenshot	2	

	 	 Nazar	Kravtsov	

	 	 	 31	

	
Screenshot	3	

	 	 Nazar	Kravtsov	

	 	 	 32	

	
Screenshot	4	

	
Screenshot	5	

	
	

	 	 Nazar	Kravtsov	

	 	 	 33	

	

	
Screenshot	6	

	
Screenshot	7	

	
	
	

	 	 Nazar	Kravtsov	

	 	 	 34	

	
Screenshot	8	

	
Screenshot	9	

	

	 	 Nazar	Kravtsov	

	 	 	 35	

	
Screenshot	9.1	

	
Screenshot	10	

	

	 	 Nazar	Kravtsov	

	 	 	 36	

	
Screenshot	11	

	
Screenshot	12	

	 	 Nazar	Kravtsov	

	 	 	 37	

	
Screenshot	13	

	
Screenshot	14	

	
	
	

	 	 Nazar	Kravtsov	

	 	 	 38	

	
Screenshot	15	

	 	 Nazar	Kravtsov	

	 	 	 39	

	
Screenshot	16	

	 	 Nazar	Kravtsov	

	 	 	 40	

	
Screenshot	16.1	(fixed)	

	
Screenshot	17	

	 	 Nazar	Kravtsov	

	 	 	 41	

	

	
Screenshot	18	

	
Screenshot	19	

	 	 Nazar	Kravtsov	

	 	 	 42	

	
Screenshot	20	

	

	 	 Nazar	Kravtsov	

	 	 	 43	

	
Screenshot	21	

	

	 	 Nazar	Kravtsov	

	 	 	 44	

	
Screenshot	22	

	 	 Nazar	Kravtsov	

	 	 	 45	

	
Screenshot	23	

	
	

	 	 Nazar	Kravtsov	

	 	 	 46	

	
Screenshot	23.1	

	
	

	 	 Nazar	Kravtsov	

	 	 	 47	

	
Screenshot	24	

	
Screenshot	25	

	

	 	 Nazar	Kravtsov	

	 	 	 48	

	
Screenshot	25.1	(fixed)	

	 	 Nazar	Kravtsov	

	 	 	 49	

	
Screenshot	26	

	 	 Nazar	Kravtsov	

	 	 	 50	

	
Screenshot	27	

	
Screenshot	28	

	 	 Nazar	Kravtsov	

	 	 	 51	

	
Screenshot	29	

	
	
	
	
	
	
	
	
	
	
	
	
	

	 	 Nazar	Kravtsov	

	 	 	 52	

	
	
	
Trace	tables	
	
Testing	Excel	import	

Description:	

Import	algorithm	reads	the	Excel	file	row	by	row	from	pre-defined	range	of	cells	and	then	sets	fields	from	each	cell	in	a	database	
record.	
Code	being	tested:	

for row in

ws1.iter_rows('A4:I29'):

 '''

 Iterating through columns,

 numbers can be adjusted

 Each field is assigned by using cells in a row

 '''

 if row[0].value == "" or row[0].value == None:

 break

 first_name = row[0].value

 last_name = row[1].value

 username = row[2].value

 if username == None:

 username = first_name.lower() + "." + last_name.lower()

 email = row[3].value

 password = str(row[4].value)

 dateofbirth = row[5].value

 gender = row[6].value

 phone = row[7].value

 nationality = row[8].value

	 	 Nazar	Kravtsov	

	 	 	 53	

 # if user exists already, don't add him

 if User.query.filter_by(username=username).first():

 pass

 else:

 user = User(username=username, email=email,

password=generate_password_hash(password),

 first_name=first_name, last_name=last_name, gender=gender,

phone=phone,

 nationality=nationality)

 db.session.add(user)

 db.session.commit()
	

Expected	result:	

For	each	row	in	a	spreadsheet,	a	record	is	made	in	the	database,	if	it	doesn’t	exists	yet	(checking	by	username).	
	
#	 First_name	 Last_name	 Username	 Email	 Password	

Encrypted	

DateofBirth	 Gender	 Phone	 Nationality	 OK?	

1	 Joseph	 Rice	 joseph123	 joseph@	
mail.com	

123	 12/12/2012	 Male	 123	
456	
789	

UK	 Yes	
Commited	

2	 George	 Brooks	 george.brooks	 george@	
mail.com	

123	 25/01/1997	 Male	 123	
456	
789	

UK	 Yes	
Commited	

3	 Armando	 Hicks	 armando.hicks	 armando@	
mail.com	

123	 10/10/1997	 Male	 123	
456	
789	

German	 Yes	
Commited	

	 	 Nazar	Kravtsov	

	 	 	 54	

4	 Haris	 Duratovic	 haris024	 haris@	
mail.com	

123	 04/06/1994	 Male	 123	
456	
789	

UK	 No	
(already	
exists)	
Not	
commited	

5	 Myrtle	 Burke	 myrtle.burke	 myrtle@	
mail.com	

123	 03/06/2004	 Female	 123	
456	
789	

UK	 Yes	
Commited	

6	 Ryan	 Rice	 ryan.rice	 ryan@	
school.com	

123	 31/12/1998	 Male	 123	
456	
789	

UK	 Yes	
Commited	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 	 Nazar	Kravtsov	

	 	 	 55	

	
	
	
	
	
	
	
	
	
	
	
	

	

	

	
	 	

	 	 Nazar	Kravtsov	

	 	 	 56	

	

System	Maintenance	
System	Overview	
	
The	system	is	cross-platform;	it	can	be	run	on	Mac	OS	X,	Linux	(and	other	distros	like	Ubuntu)	and	Windows.	The	easiest	way	to	
install	it	on	is	Ubuntu,	as	it	comes	with	pre-packaged	Python	3	and	it	is	easy	to	install	modules.		
	
I	have	made	a	project	based	on	a	modular	system.	That	means	that	different	functions	are	in	different	files.		
Here	is	a	diagram	showing	all	main	code	splitted	into	different	files:	

	

	 	 Nazar	Kravtsov	

	 	 	 57	

	
run.py	–	it	is	where	program	starts	and	it	is	where	is	should	be	started.	By	running	«python	run.py»,	the	program	starts.	
App/__init__.py	–	base,	where	most	dependencies	are	imported,	database	initialises	and	blueprints	activates.	Also	there	are	
settings	for	admin	panel	view	and	all	models	that	are	needed	to	be	imported	to	admin	panel	are	there.	
Config.py	–	this	is	where	configuration	files	are	stored.	
Decorators.py	–	decorators	such	as	login_required	
Views.py	–	all	routes	and	views	are	stored	here.	
Populate.py	–	script	where	database	can	be	rebuilt	using	new	schema	and	populated	with	random	data.	Mostly	used	for	testing		
Models.py	–	all	models	for	database	are	stored	there.	
Forms.py	–	all	forms	for	WTForms	are	stored	here.	
Constants.py	–	constants	for	models.	
	
app.db	–	main	database	file	
app/users/templates/	-	location	for	all	templates	(HTML)	
app/static/	-	location	for	all	static	files	(JS,	CSS,	images)	
/uploads/	-	location	for	file	uploads	(uploaded	assignments)	
	
	
	
	
	
	 	

	 	 Nazar	Kravtsov	

	 	 	 58	

E-R	diagram	
	

	
	
	
	
	
	
	
	
	
	
	

	 	 Nazar	Kravtsov	

	 	 	 59	

	
	
Adding	assignment	algorithm	

	

This	piece	of	code	takes	subject	and	students	choices	from	database	and	sends	them	to	user,	and	if	user	sends	request	with	a	valid	
form,	assignment	is	added.		
	
Pseudo	code	
	
Form	=	AddAssignmentForm	
	
Subject_choices	=	MakeTuple(DB.Query.Subjects.all())	
Form.subject.choies	=	Subject_choices	
Students_choices	=	MakeTuple(DB.Query.Students.all())	
Form.students.choices	=	Students_choices	
	
If	form.isValid():	
	 user	=	DB.Query.filter_by(id=user_id).first()	
	 assignment	=	Assignment(title=form.title.data,	subject_id=form.subject.data,	body=form.body.data,	author=user)	
	 DB.Session.add(assignment)	
	 DB.sesssion.commit()	
	
	 For	each	student	in	form:	
	 	 DB.Session.Add(AssignedTo())	
	 	 DB.Session.Commit()	
	 Flash(“Assignment	successfully	added”)	
	 Return	RedirectTo(Users.Assignments)	
Return	render(users.assignments.html)	

	 	 Nazar	Kravtsov	

	 	 	 60	

	
Real	code	
@mod.route('/add_assignment/',	methods=['GET',	'POST'])	
@requires_admin	
def	add_assignment():	
				"""	
				Adding	assignment	
				"""	
					
				form	=	AddAssignment(coerce=int)	#	wtforms	expects	int	
	
				#	adding	options	for	the	form	subjects	
				subject_choices	=	Subject.query.all()	
				subject_dict	=	[(subject.id,	str(subject))	for	subject	in	subject_choices]	
				form.subject.choices	=	subject_dict	
	
				#	adding	options	for	the	form	users	
				students_choices	=	User.query.all()	
				students_dict	=	[(student.id,	str(student))	for	student	in	students_choices]	
				form.students.choices	=	students_dict	
	
				if	form.validate_on_submit():	
								user	=	User.query.filter_by(id=g.user.id).first()	
								assignment	=	Assignment(title=form.title.data,	subject_id=form.subject.data,	body=form.body.data,	author=user)	
								db.session.add(assignment)	
								db.session.commit()	
	
								for	student	in	form.students.data:	

	 	 Nazar	Kravtsov	

	 	 	 61	

	
												assigned_to	=	AssignedTo(assignment_id=assignment.id,	assigned_to=student,	
submitted_file_required=form.file_required.data,		
																submitted_text_required=form.text_required.data)	
												db.session.add(assigned_to)	
												db.session.commit()	
	
								flash("Assignment	successfully	added")	
								return	redirect(url_for("users.assignments"))	
								##	
	
	
	
				return	render_template('users/add_assignment.html',	user=g.user,	form=form)	

	

	

	

	

	

	

	

	 	 Nazar	Kravtsov	

	 	 	 62	

	

User	manual	
	
	
Introduction	to	School	Web	portal:	
	
This	program	is	made	for	better	communication	between	teachers	and	students,	and	
also	giving	necessary	information	to	the	student.	Teachers	can	send	assignments	to	
students,	and	students	can	send	their	work	back	to	teacher,	and	teacher	can	give	
them	feedback.	Students	can	also	see	lots	of	information	like	notices,	their	classes	
and	what	time/teacher.		
	

Installation	guide	
	
System	Requirements	
	

• Linux-based	operating	system		
• Python	installed	on	the	computer	
• No	less	than	50MB	of	memory	storage	
• Correct	permissions	set	so	that	files	can	be	uploaded	onto	/uploads	folder	

	
Installation	for	Linux	(Ubuntu)	
	
The	installation	requires	that	a	user	knows	how	to	use	terminal	
	

1. Check	that	you	have	appropriate	version	of	Python	installed.	The	supported	
version	is	Python	3.x.	If	you	type	«python3»	in	console,	this	should	pop	up:	

	

	
	

2. Go	to	folder	with	program	by	using	«cd»	commands	and	check	that	you're	in	
correct	directory	by	using	«ls»	command	and	checking	for	«run.py»	script.	

	
	

	 	 Nazar	Kravtsov	

	 	 	 63	

3. Then,	the	installation	of	required	modules	is	needed.	«PIP»	is	used	to	install	
required	modules.	Type	«sudo	apt-get	update»	and	then	«sudo	apt-get	install	
python3-pip»	

	
	

4. After	that,	type	in	«pip	install	–r	requirements.txt».	It	will	take	some	time	to	
download	modules.	

	

	
	

	
5. Type	in	«python3	run.py».	Now	the	app	is	successfully	installed	and	running.	

	

	
	
Keeping	program	alive	
	
To	keep	our	program	working	after	closing	the	terminal	window,	we	can	use	
program	called	Screen	(https://www.gnu.org/software/screen/),	which	keeps	
terminal	screen	working	after	closing,	or	we	can	use	Supervisor	
(http://supervisord.org),	which	can	be	configured	so	that	our	program	can	be	
remotely	stopped	or	started.		
	
Database	management	
	
We	can	use	«python3	populate.py»	command	for	rebuilding	database	and	adding	
dummy	users	to	it.	After	using	it,	this	message	pops	up:	
	

	
	
If	you	enter	«y»,	database	will	be	deleted	and	new	one	will	be	made.	Also	admin	
user	will	be	added.	If	you	press	«p»,	a	few	fake	users	will	be	also	added.		
	
Configuration	
	
In	order	to	adapt	the	program	to	the	environment	of	your	school,	it	is	useful	to	
change	a	few	settings.	In	«run.py»	script,	we	can	change	debug	state	and	which	port	
it	is	going	to	be	used.	By	default	it	is	set	up	at	«5000»,	if	you	want	users	to	access	

	 	 Nazar	Kravtsov	

	 	 	 64	

without	specifying	port,	you	should	choose	port	«80».	Make	sure	that	it	is	available	
for	program	to	use	(i.e.	not	occupied	by	other	program).		
	
Running	program	
	
After	setting	up	database,	type	«python3	run.py»	in	order	to	run	the	program.	With	
default	settings	it	should	look	like	this:	

	
	
After	that,	go	to	http://127.0.0.1:5000/users/login/	(login	page).	Change	port	and	IP	
address	appropriately	if	you	changed	them	in	configuration.	This	window	should	pop	
up.		
	

	
	
Default	login/password	for	administrator	is	“admin/admin”.		
	
	
	
	

	 	 Nazar	Kravtsov	

	 	 	 65	

	
	
Here	is	the	main	dashboard	of	the	website	after	log-in.	
	
Adding	users	from	Excel	file	
	
It	is	relatively	easy	to	add	users	from	excel	file.	Click	on	«Import	users	from	Excel»	at	
the	sidebar,	and	click	on	hyperlink	where	it	says	«Form	for	Excel	file	user	adding».			

	
	
	

	 	 Nazar	Kravtsov	

	 	 	 66	

There	is	already	data	inside	Excel	file,	so	if	you	want,	clear	it	and	fill	it	with	your	own	
data.	

	
	
Username	will	be	generated	from	first	name	and	last	name,	and	email	will	be	set	up	
when	user	logins	in	for	first	time.	
	
When	you	finished	editing	Excel	file,	upload	it	back	to	the	website.	All	users	that	are	
added	will	be	shown	here.	

	
	

	 	 Nazar	Kravtsov	

	 	 	 67	

Assignments	view	
	

	
	
Here	is	the	assignments	view,	where	all	information	about	assignment	and	
submission	form	is	showed.		
	
Feedback	view	

	
	
Here	is	all	submitted	data	from	each	user.	
	

	 	 Nazar	Kravtsov	

	 	 	 68	

	
	
Adding	assignment	
	

	

	
	

	 	 Nazar	Kravtsov	

	 	 	 69	

	
	

Error	handling	
	
In	every	form,	there	is	error	handling.	For	example,	presence	check,	this	is	where	the	
entered	value	is	empty:	
	

	
Invalid	email:	

	
	
	
When	incorrect	date	is	given,	this	message	shows	up:	
	

	 	 Nazar	Kravtsov	

	 	 	 70	

	
	
If	student	tries	to	access	sections	of	website	that	are	only	available	for	teachers	and	
administrators:	

	
	
	
	
	 	

	 	 Nazar	Kravtsov	

	 	 	 71	

	

Appraisal	
	
Feedback	letter	
	

Overall I found Nazar’s system very effective and I was hugely
impressed with the final management system for schools. I did
have concerns about the project – I did wonder about the
effectiveness and user friendly nature as it’s vital in a time
challenged role that the system allowed easy access and
navigation.

The system seems to meet all the objectives and I was
certainly overwhelmed when I saw the marriage between detail
and the user-friendly nature of the layout and front screen. I
was particular struck how Nazar enabled me to directly contact
members of my house and even manage sub groups like
prefects and tutor staff. Navigation was simple yet hugely
effective and I felt very comfortable with control panel and the
options given.

But, to make it the main system for the school, more work has
to be made, for example, I would like separate paging system
for each school subject, where I can upload my own material
for students.

Overall, I was able to work very quickly on it and its usefulness
as a data controller and tool for assessment was brilliant.

Well done Nazar and what an impressive piece of work.

[redacted]	
	
	
	
	
	
	

	 	 Nazar	Kravtsov	

	 	 	 72	

Analyse	of	feedback	
	
The	feedback	I	was	given	was	mostly	positive,	especially	about	design	and	usability.		
	
	

Objective	 Met?	 Comment	
1. Program	should	have	

log-in	 system,	 a	
method	 to	 register	
users,	have	activation	
system,	 log-out	
system	
	

Yes	 This	was	relatively	easy	to	
do,	 but	 managing	
database	 and	 tables	 and	
hashing/checking	
password	 was	 the	
hardest	part	

2. User	interface	should	
show	all	assignments		
	

Yes	 Positive	feedback	

3. User	 inputs	 must	 be	
validated	 to	 avoid	
erroneous	 or	
incorrect	data.	
	

Yes	 This	 was	 achieved	 both	
with	 manual	 checking	
and	forms	with	validation	

4. Permissions	
4.1. Unlogged	

users	 can't	
access	 main	
part	of	system	

4.2. Students	 can't	
access	some	of	
parts	 of	
system	

4.3. Teachers	 can	
access	most	of	
parts	 of	
system	 except	
admin	panel	

4.4. Administrators	
can	 access	
everything		

	

Yes	 -	

5. There	 is	 teacher	
assigned	 to	
classes/groups	 and	

Yes	 Positive	feedback	

	 	 Nazar	Kravtsov	

	 	 	 73	

students	are	assigned	
to	classes/groups	
	

6. Teacher	 can	 send	
assignment	 to	
students	
	

Yes	 Positive	feedback	

7. Students	 can	 upload	
their	finished	work	to	
the	system	
7.1. Students	 can	

upload	text	
7.2. Students	 can	

upload	files	
	

Yes	 Positive	feedback	given	

8. Teacher	 can	 submit	
feedback	to	a	student	
	

Yes	 Positive	feedback	

9. Users	 can	 reset	
submitted	 work	 or	
delete	assignment	
	

Yes	 -	

10. Timetable	 available	
for	 a	 student	
(timeline)	
	

Yes	 -	

11. Administrators	 can	
populate	 database	
with	 data	 (Excel	 file,	
etc.)	

Yes	 Positive	feedback	

	
	 	

Extensions	
	
There	are	lots	of	ways	in	which	the	project	can	be	improved:	

• Ability	 to	 add	 customised	 pages	 with	 information	 on	 it	 (for	 example,	
related	to	a	subject)	

• Ability	to	see	classes	and	who	are	on	those	classes	
• Integration	 with	 existing	 authentication	 systems	 (like	Microsoft	 Active	

Directory)	
• Ability	to	see	other	users'	profiles	

	 	 Nazar	Kravtsov	

	 	 	 74	

• Integration	 with	 e-mail	 systems	 (notifications	 about	 new	 assignments,	
feedback	given,	etc)	

• Messaging	system	(real-time)	
• Online	user	help	

	
	
Reflection	
	
	
When	I	was	starting	the	project,	I	was	confident	that	I	will	do	something	web-
based	and	written	on	Python,	because	on	those	areas	I	have	most	experience,	
and	they	are	most	interesting	areas	as	well.	I	had	loads	of	ideas	in	my	head,	like	
real-time	 games,	 web	 portals,	 etc.	 But	 I	 chose	 to	 do	 this	 project,	 because	 I	
thought	that	it	will	be	optimal	in	terms	of	experience	and	time	it	will	take	for	me	
to	 finish	 the	 project.	 When	 I	 was	 programming	 my	 project,	 I	 haven't	
encountered	any	problems.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 	 Nazar	Kravtsov	

	 	 	 75	

	
	
	
	
	
	
	
	
	

